

# MANAGING ARC FLASH: A Risk Management Approach

Steve Williams

Engineers Australia - Electrical College

14 June 2017, Brisbane

#### **ARC FLASH – RELEVANCE?**



- Higher Safety Awareness & OHS Legislation
- Statistics Less Electrocutions; More Burns
- Larger Systems & Higher Fault Currents
- Ageing Switchgear (& still expected to function!)
- Demand for Production -> Live Work
- Less Maintenance Staff (trained)
- Increased Litigation & Insurance Costs
- Software Technology Advancements

#### ARC FLASH CHARACTERISTICS



- Arcing Electrical Fault a.k.a. Arc "Flash" or Fireball
- An Arc Flash consists of:
  - Radiant heat and light
  - Plasma cloud (super-heated ionised gas)
- Copper & Aluminium is vaporised (Cu expands 44,000 times!)
- Pressure waves shear bolts, destroy panels (& burst ear drums!)
- Molten metal & shrapnel conductors, steel, insulation
- Ignition of clothing several meters away
- Energy involved?
  - A 10kA arc blast (480 volts) is equivalent to 8 sticks of dynamite!
- HV behaves differently to LV!

#### **BOLTED FAULT vs. ARC FAULT**



#### LV Bolted faults:

- Low impedance and high current
- Energy is contained by the conductor (bus or cable)
- Cleared quickly by circuit breakers or fuses (Inst. trip)
- Arcing is confined within the circuit breaker or fuse
- Relatively low safety risk to personnel

#### LV Arcing faults:

- High impedance (air) results in lower current (~30-40%)
- Energy released into surrounding air
- Persist longer (Inverse Time)
- Propagate along bare bus
- High release of heat and blast energy
- Are very destructive and dangerous to personnel

## SOME CAUSES OF ARC FLASH



- Accidental contact
- Dropped tools
- Faulty / Inappropriate test equipment
- Incorrect device removal / operation
- Corrosion / Conductive dust particles
- Deteriorating or poor insulation
- Misalignment of moving contacts
- Entry of foreign body (rodent, snake)
- Equipment operating beyond its limits or lifespan

## SOME CAUSES OF ARC FLASH



- Accidental contact
- Dropped tools
- Faulty / Inappropriate Test Equipment
- Incorrect Removal / Operation / Modification
- Corrosion / Conductive dust particles
- Deteriorating or poor insulation
- Misalignment of moving contacts
- Entry of foreign body (rodent, snake)
- Equipment operating beyond its limits or lifespan

## SOME CAUSES OF ARC FLASH



- Accidental contact
- Dropped tools
- Faulty / Inappropriate Test Equipment
- Incorrect device removal / operation
- Corrosion / Conductive dust particles
- Deteriorating or poor insulation
- Misalignment of moving contacts
- Entry of foreign body (rodent, snake)
- Equipment operating beyond its limits or lifespan

## **EXAMPLE - 415V ARC FLASH**



ELECTRICAL ENGINEERING SPECIALISTS



## **EXAMPLE - 415V ARC FLASH**



**ELECTRICAL ENGINEERING SPECIALISTS** 



## **EXAMPLE - 690V ARC FLASH**



LECTRICAL ENGINEERING SPECIALISTS



## **EXAMPLE - 690V ARC FLASH**



LECTRICAL ENGINEERING SPECIALISTS



#### **MISCONCEPTION #1**



## Arc Flash Management Arc Fault Containment

- Arc Fault Containment:
  - Is the tested ability of a switchboard to safely contain an arcing fault, to avoid damage to adjacent switchgear and/or injury to an operator, while in its designed operational state.
    - i.e. with the doors and panels closed and secured!
- Arc Flash Management:
  - Is the combination of measures applied to an installation to minimise the risk of an arcing fault injury to an electrician who is carrying out a task on a switchboard.......

with the doors or panels opened!

#### **MISCONCEPTION #2**



Need to wear calculated PPE when switching (i.e. doors closed and secured)

In USA, NFPA 70E (2015) standard is now clear:

"Normal operation of electric equipment is permitted with no extra PPE when all of the following conditions are satisfied:

- The equipment is properly installed;
- The equipment is properly maintained;
- All equipment doors are closed and secured;
- All equipment covers are in place and secured; and
- There is no evidence of impending failure."

#### **MISCONCEPTION #3**



#### HV Arc Flash risks are higher than LV

- High Voltage:
  - Low fault impedance faster clearing times
  - Switching procedures normally required
  - Larger working distance to conductors
- Low Voltage:
  - Higher fault impedance slower clearing times
  - Worker complacency "it's only 415V!"
  - Lack of procedures
  - Closer proximity to conductors

#### **ARC FLASH PPE STANDARDS**



#### International (USA):

- IEEE 1584 Guide for Performing Arc Flash Hazard Calculations
- NFPA 70E 2015 Edition Standard for Electrical Safety in the Workplace

#### Australia & New Zealand:

- AS/NZS 4836:2011 Safe working on or near low-voltage electrical installations and equipment
- (Aust) ENA NENS 09-2014 Guideline for Selection, Use and Maintenance of PPE for Electrical Arc Hazards.
- None are legislated (except mining)
- But OH&S Duty of Care applies!

## AS/NZS 4836:2011



- Safe working on or near <u>LV</u> installations.
  - Revised in May 2011 to include Arc Flash Safety
  - Emphasises Risk Assessment & Risk Management
  - Competent person must identify risk for work within 3m of exposed energised conductors
  - Assess and reduce risk, e.g. Establish Policy & Procedures,
     Switch off, Isolate/Tag, Erect Barriers, etc
  - Lists suitable Safety Equipment and Tools (but FR not AR)
  - PPE is not first line of defence, but to be used as a precautionary measure
  - Does not utilise Incident Energies to select HRC & PPE

## AS/NZS 4836:2011

protection (if required)



**ELECTRICAL ENGINEERING SPECIALISTS** 

| T/                                                  | ABLE 9.2 GUIDE TO THE SELECTION                                                                                                                                                                                                              | ON OF PERSONAL PROTECTIVE EC                                                                                                                                                                                                                            | QUIPMENT                                                                                                                                                                                                |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TASK                                                | CURRENTS UP TO AND<br>INCLUDING 100 A                                                                                                                                                                                                        | CURRENT EXCEEDING 100 A AND UP TO AND INCLUDING 400 A                                                                                                                                                                                                   | CURRENTS EXCEEDING 400 A                                                                                                                                                                                |
| Work (isolated and verified)                        | Footwear Protective clothing (if required) Eye protection (if required) Gloves (if required) Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required)                                               | Footwear Protective clothing (if required) Eye protection (if required) Gloves (if required) Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required)                                                          | Footwear Protective clothing (if required) Eye protection (if required) Gloves (if required) Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required)          |
| Switching, isolating, removing fuses or links       | Footwear Protective clothing Eye protection Gloves (if required) Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required)                                                                           | Footwear Protective clothing Eye protection Gloves Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required)                                                                                                    | Footwear Protective clothing Eye<br>protection Gloves Hearing protection (if<br>required) Safety helmet (if required)<br>Respiratory protection (if required)                                           |
| Isolation verification,<br>testing or fault finding | Footwear Protective clothing Eye protection Gloves Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required)                                                                                         | Footwear Protective clothing* Eye protection Gloves Arc flash suit and hood (if required) Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required) Face shield (if required)                                   | Footwear Protective clothing* Eye protection Gloves Face shield Arc flash suit and hood (if required) Hearing protection (if required) Safety helmet (if required) Respiratory protection (if required) |
| Live electrical work                                | Footwear Protective clothing* Eye protection Insulating gloves Arc flash suit and hood (if required) Flame-resistant gloves (if required) Face shield (if required) Safety helmet (if required) Hearing protection (if required) Respiratory | Footwear Protective clothing * Eye protection Safety helmet Insulating gloves Arc flash suit and hood (if required) Flameresistant gloves (if required) Face shield (if required) Hearing protection (if required) Respiratory protection (if required) | Footwear Protective clothing * Eye protection Insulating gloves Flame-resistant gloves Arc flash suit and hood Hearing protection Respiratory protection (if required)                                  |

#### **ENA NENS 09-2014**



- National Guideline for Selection, Use and Maintenance of PPE for Electrical Arc Hazards
- Published by Energy Networks Association, Aust.
- Great improvement over previous version
- Uses Risk Assessment process
- Compares two calculation methods:
  - IEEE 1584
  - NENS 09 (based on 2013 Ausgrid research)
- Very focussed on the PPE garments, fabrics and properties

#### **TERMINOLOGY**



#### "Arc Flash Incident Energy"

 The amount of thermal energy a surface (or person) is exposed to at a set distance from an arc, typically the called the Working Distance. Units used are cal/cm² (!?)

#### "Arc Flash Boundary"

The approach limit at which a person would be expected to receive a just curable burn on exposed skin (1.2 cal/cm²) if an arc flash were to occur. Inside this limit, a person may experience second degree burns.

#### OLD ARC FLASH PPE CATEGORIES



ELECTRICAL ENGINEERING SPECIALIST

| F                                    | PPE Rating Table                     | <b>=</b>     |
|--------------------------------------|--------------------------------------|--------------|
| Incident energy<br>rating in cal/cm² | Arc Flash<br>Hazard/Risk<br>Category | PPE Category |
| N/A                                  | 0                                    | 0            |
| 0-4                                  | 1                                    | 1            |
| >4-8                                 | 2                                    | 2            |
| >8-25                                | 3                                    | 3*           |
| >25-40                               | 4                                    | 4            |
| >40                                  | x                                    | N/A          |

PPE controls are not suitable for incident energies in excess of 40 cal/cm<sup>2</sup>.

Alternative controls shall be implemented.

## **EXAMPLES OF PPE CATEGORIES**



PPE – Categories 1 & 2



PPE – Categories 3 & 4



#### LATEST APPROACH



- Site Specific Categories
  - User defined in software
- Based on PPE Clothing Selected:
  - Improvements in clothing materials
  - Need to consider environment
  - Lifespan depends on washing

## SO WHAT'S THE PROBLEM?



- Just do some calcs and buy some PPE?
- Very few plants are static
  - Equipment Modifications
  - Plant power system changes
  - Utility changes
  - Staff changes
- Arc Flash Risks will therefore change with time.
- You need a long term Arc Flash Strategy!

#### WHERE DO YOU START?



ELECTRICAL ENGINEERING SPECIALISTS

#### Understand your current Risks:

10 E

11 m/m

$$D_{\mathcal{B}} = \left[ C_f E_n \left( \frac{t}{0.2} \right) \left( \frac{610^x}{E_{\mathcal{B}}} \right) \right]^{\frac{1}{x}}$$

For the Lee method

$$D_B = \sqrt{5.12x10^5 VI_{bf} \left(\frac{t}{E_B}\right)}$$

where:

| $D_{\mathtt{B}}$  | is the distance of the boundary from arcing point (mm)                         |
|-------------------|--------------------------------------------------------------------------------|
| $E_{\mathtt{n}}$  | is the incident energy (cal/cm <sup>2</sup> ) normalized for time and distance |
| $C_f$             | is a calculation factor                                                        |
|                   | 1.0 for voltages above 1kV                                                     |
|                   | 1.5 for voltages at or below 1kV                                               |
| t                 | is the arcing time (seconds)                                                   |
| $E_{\mathcal{B}}$ | is the incident energy in cal/cm <sup>2</sup> at the boundary distance         |
| X                 | is the distance exponent from Table 1                                          |
| $I_{	t bf}$       | is the bolted fault current for three-phase faults (symmetrical RMS)(kA)       |
|                   |                                                                                |

#### **INTERPRET YOUR STUDY**



- Be careful..... common issues:
  - Confusion
  - Conflict
  - Misunderstanding
  - Over-reaction
- Result: Bad decisions
- Most common mistakes?
  - Jumping straight to a PPE selection process
  - Broad brush approach for the whole site

## **EVALUATE THE RISKS**



RING SPECIALISTS

| Likelihood                                                                                                                                                   | d     | Rare The event may occur in exceptional circumstances | Unlikely The event could occur at some time. | Moderate The event will probably occur at some time. | Likely The event will occur in most droumstances. | Certain The event is expected to occur in all circumstances |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|
| Consequence                                                                                                                                                  |       | Less than once a year                                 | At least<br>once a year                      | At least<br>once in 6 months                         | At least<br>once per month                        | At least<br>once per week                                   |
|                                                                                                                                                              | Level | 1                                                     | 2                                            | 3                                                    | 4                                                 | .5                                                          |
| Negligible<br>No injuries Low financial loss.                                                                                                                | 0     | 0                                                     | 0                                            | 0                                                    | 0                                                 | 0                                                           |
| Minor<br>First-aid treatment. Moderate loss.                                                                                                                 | 1     | 1                                                     | 2                                            | 3                                                    | 4                                                 | 5                                                           |
| Serious Medical treatment required. High financial loss, Moderate environment implications. Moderate loss of reputation. Moderate business interruption.     | 2     | 2                                                     | 4                                            | 6                                                    | 8                                                 | 10                                                          |
| Major Excessive, multiple long term injuries. Major financial loss, High- erwironmental implications. Major loss of reputation. Major business interruption. | 3     | 3                                                     | 6                                            | 9                                                    | 12                                                | 15                                                          |
| Fatality<br>Single death.                                                                                                                                    | 4     | 4                                                     | 8                                            | 12                                                   | 16                                                | 20                                                          |
| Multiple Multiple deaths and serious long term injuries.                                                                                                     | 5     | 5                                                     | 10                                           | 15                                                   | 20                                                | 25                                                          |

#### Legend

| Risk<br>Rating | Risk Priority | Description                                                                                                           |
|----------------|---------------|-----------------------------------------------------------------------------------------------------------------------|
| 0              | N.            | No Risk: The costs to treat the risk are disproportionately high compared to the negligible consequences              |
| 1-3            | L             | Low Risk: May require consideration in any future changes to the work area or processes, or can be fixed immediately. |
| 4-6            | M.            | Moderate: May require corrective action through planning and budgeting process.                                       |
| 8-12           | H             | High: Requires Immediate corrective action:                                                                           |
| 15-25          | E             | Extreme Requires immediate prohibition of the work, process and immediate corrective action.                          |

#### **IDENTIFY BEST CONTROLS**



- Use Hierarchy of Controls
- Individual reviews required
- Use a standard process
- But..... Keep It Simple!
- PPE only as last choice



#### **REVIEW MITIGATION OPTIONS**



- Options vary in:
  - Effectiveness
  - Capital cost
  - Production interference
  - Worker acceptance
- Preferably use multi-layer approach
- Most effective options:
  - Reduce fault levels & clearing times
  - Reduce likelihood of occurrence
- Document your outcomes & reasons



- Substitution Options:
  - Minimal cost at initial design stage
  - Isolate elsewhere (that has lower risk)
  - Replacement of older switchboards with improved segregation, better insulated busbars, etc.
  - Replace older OCBs with VCBs or SF6
  - Replace older protection relays with modern faster acting units, and more setting adjustments
  - Replace manual racking with motorised racking
  - Replace MCCBs with fuses (& MCCBs have limitations)
  - Provide better (safer) Test-for-Dead equipment



- Engineering Solutions:
  - Reduce fault levels by changing network configuration
  - Reduce fault clearance times by installing enhanced relay protection (cable diff; transformer diff)
  - Select more sensitive relay settings, or dual settings
  - Install arc fault detection relays
  - Install arc quenching schemes (new switchboards)
  - Remove operator from risk:
    - Remote switching control
    - Remote circuit breaker racking schemes



- Administrative Options:
  - Improve maintenance and switching procedures
  - Establish S.O.P.s for common tasks
  - Improve operator training and awareness programmes
  - Train & encourage electrical personnel to use self risk assessments in typical situations
  - Limit access to switch rooms and switchgear
  - Eliminate live work on/near exposed conductors



- Employee Training
  - Defining and Evaluating Competencies
  - Course Content and Facilitation
  - Existing Electrical Employees & Contractors
  - New Electrical Employees & Contractors
  - Non Electrical Personnel (even management?)
  - Risk Assessment Techniques
  - Refresher Courses & Toolbox Meetings



- Long Term Engineering Issues
  - Accuracy & validity of Electrical Drawings
  - Equipment identification & labelling one system!
  - Specifications & selection of New Equipment
- Arc Flash Change Management Procedures
  - Equipment additions & modifications
  - Upgrading older Equipment
  - Fault studies & protection settings
  - Updates to Arc Flash Studies
- Technical Support Arrangements

## RISK ASSESSMENT – EXAMPLE 1



**ELECTRICAL ENGINEERING SPECIALISTS** 

- 415V MCC 4000A incomer; 12 years old, modern
- 2500kVA transformer with >40kA Fault Level
- Rackable design; openings
- Arc Fault Containment issues
- Frequency -> Likelihood
  - Switching tested & reset monthly
  - Maintaining isolated; inspected annually
- Consequence -> Risk?
- What are Mitigation Options?



#### RISK ASSESSMENT – EXAMPLE 2



- Dragline Sub, >15 years old
- 6.6kV Vac Breaker Push In
- Arc Fault Containment?
- No on-board 66kV Breaker
- Frequency -> Likelihood
  - Insertion & removal while live
  - Switching tested & reset monthly
- Consequence -> Risk?
- What are Mitigation Options?



#### IF MITIGATION IS NOT POSSIBLE....



#### PPE Solutions:

- Review remaining unmitigated risks
- Select appropriate PPE to suit
- Clothing trials & selection
- Clothing replacement programme
- Switchroom kits
- Contract staff(?)

#### ARC FLASH MANAGEMENT PLAN



- Formal Management Plan:
  - Official Company Document
  - Integrated with safety documentation
  - Integration with other technical documentation
  - Sign off by management (and OH&S)
  - Reviewed annually
- Protection against litigation (?)
- Justification for upgrades & improvements

## **ONGOING CONTROVERSIES:**



- Quantifying the Australian/NZ Arc Flash issue....
  - Statistics, statistics, statistics (States & Definitions)
- IEEE 1584 calculations are flawed....
  - Change is coming, but don't wait
- What Standards should you use?
  - Read & seek advice
- Standards keep on changing....
  - But do nothing, and you will achieve nothing
- Workers dislike & avoid the PPE....
  - Involve your workers in the process

## IN CONCLUSION.....



ELECTRICAL ENGINEERING SPECIALISTS



## **THANK YOU**

Questions?

