

ELECTRICAL ENGINEERING SPECIALISTS

INTELLIGENT MCC COST COMPARISON

A Case Study

Brad James Rockwell Automation – Power TechED 2017 14 June 2017

INTRODUCTION

- Motor Control Centres (MCC) are widely used in industry to power low voltage motors.
 - Consist of combination motor starter circuits in a modular format.
 - Traditionally contained only electromechanical components with all connections hard wired.
- Modern industrial plants now rely heavily on plant automation to operate effectively.

THE INTELLIGENT MCC

- MCCs can now incorporate advanced control and communications capability.
 - Intelligent devices that can do far more than simply switch a motor on or off.
 - Integrate directly with the plant control system.
- Higher level of capability, however hardware required is generally more expensive.
- Broad definition: Starter using intelligent motor protection relay (MPR).

MOTOR STARTER CIRCUITS

- Many styles of motor starter circuits used on industrial plants.
 - Traditional hard wired starter circuits using remote chassis based PLC I/O.
 - Intelligent MCC using network connected motor protection relays (MPR).
 - Hybrid approaches incorporating distributed I/O modules within the MCC.

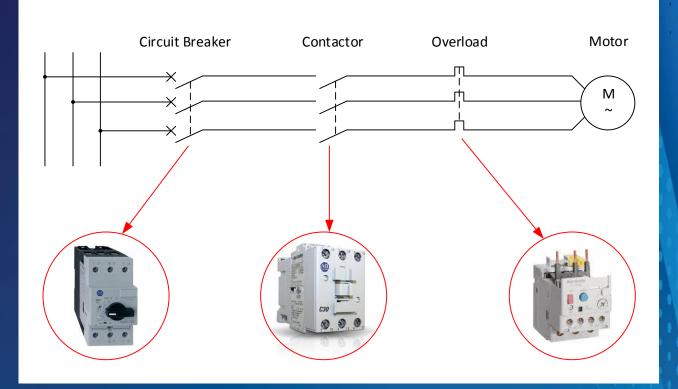
IS THERE ADDITIONAL COST?

- Is it cost effective to specify an intelligent MCC design?
 - Are higher hardware costs offset by reduced cabling costs?
 - What size/type of motor starters should implement an intelligent MCC design?
 - What is the extra cost to buy an intelligent MCC?
 - Non economic benefits e.g. advanced protection capability, improved maintenance information?
- The short answer is...
 - It depends

TOTAL MCC COST

- Total cost of an automated MCC includes:
 - MCC hardware (switchgear/motor starter circuits).
 - Control system hardware (PLC and I/O modules, communications hardware).
 - Interconnecting wiring .
- Total automation cost for different styles of MCC starter circuit.
- Compare cost difference between different starter circuits.
- Informed discussion about advantages and disadvantages of different MCC options.

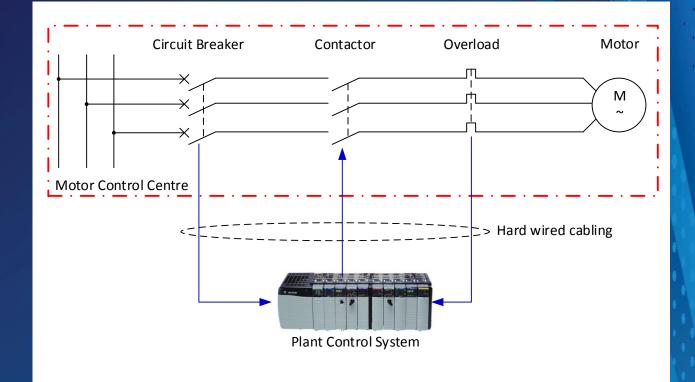
TRADITIONAL MOTOR STARTER


- Traditional hard wired motor starter:
 - Electromechanical components with all connections hard wired.
 - Individual hard wired connections to the Plant Control System to provide automation.
 - Requires interconnecting wiring between MCC and Plant Control System.

TRADITIONAL MOTOR STARTER

ELECTRICAL ENGINEERING SPECIALISTS

Simple representation of a traditional hard wired motor starter:

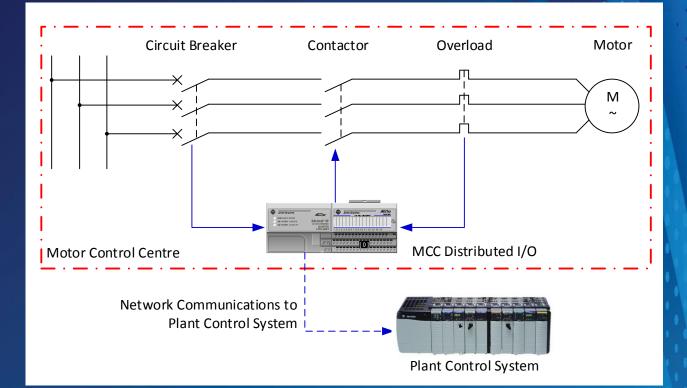


TRADITIONAL MOTOR STARTER

ELECTRICAL ENGINEERING SPECIALISTS

Hard wired connection to plant control system:

HYBRID MOTOR STARTER

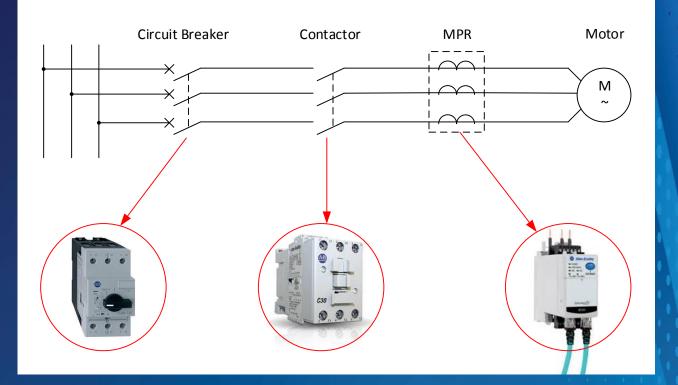

- Hybrid approach to motor starter circuit:
 - Similar MCC hardware to traditional motor starter.
 - Electromechanical components with all connections hard wired.
 - Distributed I/O for connection to the Plant Control System installed in MCC.
 - Network connection to Plant Control System.

HYBRID MOTOR STARTER

ELECTRICAL ENGINEERING SPECIALISTS

Distributed I/O connection to plant control system:

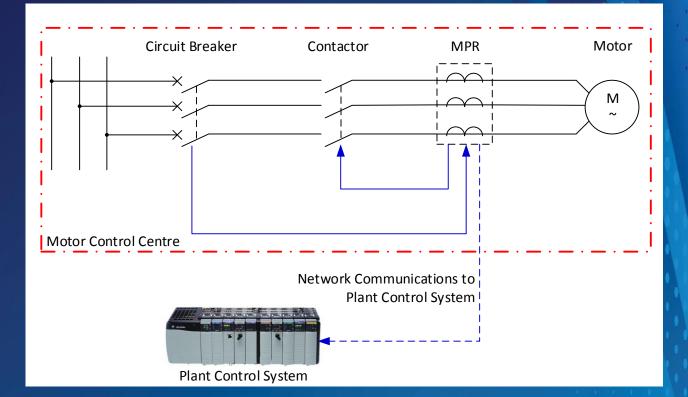
INTELLIGENT MOTOR STARTER


- Intelligent motor starter circuit:
 - MPR controls motor operation.
 - Incorporates I/O for motor control signals.
 - Incorporates advanced protection features.
 - Network connection to Plant Control System.

INTELLIGENT MOTOR STARTER

ELECTRICAL ENGINEERING SPECIALIST

Simple representation of an intelligent motor starter:



INTELLIGENT MOTOR STARTER

ELECTRICAL ENGINEERING SPECIALISTS

Network connection to plant control system:

COST COMPARISON PROCESS

- Consider MCC hardware, control system hardware, cabling and installation costs.
- Traditional hard wired motor starter as base line for comparison.
- Determine the cost difference between individual starter circuits of different types.
- Consolidate control system hardware to determine cost per point.

COST COMPARISON PROCESS

- Unit rates for supply and installation of cabling based on typical contractor installation rates.
- Typical integrator and trade pricing for hardware comparisons.
- Multiply cost differences to determine typical cost savings for a complete MCC.

STARTER CIRCUITS TO COMPARE

- Starter circuits to compare:
 - Basic DOL motor starter (least complex)
 - Intermediate DOL motor starter (medium complexity)
 - Advanced DOL motor starter (most complex)
 - Typical variable speed drive

STARTER CIRCUIT OPTIONS

- Starter circuit options to compare:
 - 1. Traditional hard wired starter circuit with I/O connections to a remote PLC
 - Hybrid starter circuit with MCC mounted distributed I/O using network connection to a remote PLC
 - 3. Intelligent MCC with network connection from motor protection relays to a remote PLC

BASIC DOL MOTOR

ELECTRICAL ENGINEERING SPECIALISTS

 Protection and control requirements for basic DOL motor starter (7.5kW): Thermal overload protection Auxiliary relays (4) – PLC digital inputs (5) – PLC digital outputs (1)

INTERMEDIATE DOL MOTOR

- Protection and control requirements for intermediate DOL motor starter (22kW):
 - Thermal overload
 - Thermistor protection
 - Auxiliary relays (5)
 - PLC digital inputs (7)
 - PLC digital outputs (2)

ADVANCED DOL MOTOR

- Protection and control requirements for advanced DOL motor starter (55kW):
 - Electronic overload protection
 - Thermistor protection
 - Current monitoring
 - Undercurrent protection
 - Auxiliary relays (5)
 - PLC digital inputs (8)
 - PLC digital outputs (2)
 - PLC analogue inputs (1)

VARIABLE SPEED DRIVE

- Protection and control requirements for a typical variable speed drive:
 - Auxiliary relays (4)
 - PLC digital inputs (5)
 - PLC digital outputs (1)
 - PLC analogue inputs (1)
 - PLC analogue outputs (1)

ASSUMPTIONS

- Hard wired PLC I/O ControlLogix range, includes marshalling terminals and panel wiring.
- Distributed I/O Flex IO range.
- Intelligent MPR Allen-Bradley E300 range.
- Remote PLC chassis located approximately 30m away
- Hard wired control cabling using 1.5mm² multicore control cable.
- Comparison only evaluates differences in hardware between starter types.

ASSUMPTIONS

- Comparison only evaluates hardware, equipment and labour, does not consider extra features of MPR.
- Apart from differences in protection and control, starter circuits are the same.
- E.g. all circuits use the same indication and control.
- PLC programming for each starter type assumed to be the same.
- Network connection for intelligent MPR device level ring.
- Network connection for distributed I/O one connection per tier.

BASIC DOL COMPARISON

Scenario 1 - Basic DOL Motor Starter (7.5kW)							
Description	Component	Make / Model	Qty	Sub Total		Cost Difference	
Option 1 Hard Wired	Thermal Overload Relay	S&S CT7N-23-C10	1	\$	124		
	Auxiliary Relays	Finder 55 Series & Base	4	\$	107	Baseline	
	PLC Digital Inputs	ControlLogix 1756-IB32	5	\$	178		
	PLC Digital Outputs	ControlLogix 1756-OB32	1	\$	45		
	Control Cable (Cores)	1C 1.5mm ² (Part of Multicore)	8	\$	716		
Option 2 Intelligent MPR	E300 Sensing Module	193ESMI30AC23	1	\$	191	+\$240	
	E300 Control Module	193EIO6324D	1	\$	534		
	E300 Communications Module	193ECMETR	1	\$	610		
	Auxiliary Relays	Finder 55 Series & Base	1	\$	27		
	Network Connection to PLC	Cat 6	1	\$	48		
<i>Option 3</i> Distributed I/O	Thermal Overload Relay	S&S CT7N-23-C10	1	\$	124	-\$225	
	Auxiliary Relays	Finder 55 Series & Base	4	\$	107		
	PLC Digital Inputs	Flex I/O 1794-IB16	5	\$	215		
	PLC Digital Outputs	Flex I/O 1794-OB16	1	\$	52		
	Control Cable (Cores)	1C 1.5mm ² (Panel Wiring)	8	\$	445		

BASIC DOL COMPARISON

- Intelligent MPR option is \$240/motor more than the hard wired option.
- Distributed I/O option is \$225/motor less than hard wired option.
- Main factors affecting cost comparison:
 - Higher cost of E300 hardware
 - Higher cost of interconnecting wiring to remote PLC

INTERMEDIATE DOL COMPARISON

Scenario 2 - Intermediate DOL Motor Starter (22kW)							
Description	Component	Make / Model	Qty	S	ub Total	Cost Difference	
	Thermal Overload Relay	S&S CT7N-85-C75	1	\$	345.80		
	Thermistor Relay	S&S RT7-E2	1	\$	436.80	Deceline	
Option 1	Auxiliary Relays	Finder 55 Series & Base	5	\$	133.95		
Hard Wired	PLC Digital Inputs	ControlLogix 1756-IB32	7	\$	249.58	Baseline	
	PLC Digital Outputs	ControlLogix 1756-OB32	2	\$	90.03		
	Control Cable (Cores)	1C 1.5mm ² (Part of Multicore)	10	\$	895.20		
Option 2 Intelligent MPR	E300 Sensing Module	193ESMIG60AC55	1	\$	381.50	-\$160	
	E300 Control Module	193-EIOGP4224D	1	\$	534.10		
	E300 Communications Module	193ECMETR	1	\$	610.40		
	E300 Expansion Module	193EXPDIO4224D	1	\$	390.60		
	Auxiliary Relays	Finder 55 Series & Base	1	\$	26.79		
	Network Connection to PLC	Cat 6	1	\$	47.58		
<i>Option 3</i> Distributed I/O	Thermal Overload Relay	S&S CT7N-85-C75	1	\$	345.80		
	Thermistor Relay	S&S RT7-E2	1	\$	436.80	-\$270	
	Auxiliary Relays	Finder 55 Series & Base	5	\$	133.95		
	PLC Digital Inputs	Flex I/O 1794-IB16	7	\$	301.20		
	PLC Digital Outputs	Flex I/O 1794-OB16	2	\$	104.08		
	Control Cable (Cores)	1C 1.5mm ² (Panel Wiring)	10	\$	556.24		

INTERMEDIATE DOL COMPARISON

- Intelligent MPR option is \$160/motor less than hard wired option.
- Distributed I/O option is \$270/motor less than hard wired option.
- Main factors affecting cost comparison:
 - Higher cost of additional MCC hardware.
 - Higher cost of interconnecting wiring to remote PLC.

ADVANCED DOL COMPARISON

Scenario 3 - Advanced DOL Motor Starter (55kW)							
Description	Component	Make / Model	Qty		Sub Total	Cost Difference	
	Electronic Overload Relay	S&S CEP7-EEHF	1	\$	902.72		
	Thermistor Relay	S&S RT7-E2	1	\$	436.80		
	Current Transducer	IME TT351030VDC	1	\$	495.04		
Option 1	Undercurrent Relay	Carlo Gavazzi DIB-02-C-D48-5A	1	\$	276.64		
	Auxiliary Relays	Finder 55 Series & Base	5	\$	133.95	Baseline	
Hard Wired	PLC Digital Inputs	ControlLogix 1756-IB32	8	\$	285.23		
	PLC Digital Outputs	ControlLogix 1756-OB32	2	\$	90.03		
	PLC Analog Inputs	ControlLogix 1756-IF16	1	\$	127.04		
	Control Cable (Cores)	1C 1.5mm ² (Part of Multicore)	13	\$	1,163.76		
	E300 Sensing Module	193ESMVIG100AC97	1	\$	697.90	-\$1,310	
	E300 Control Module	193EIOGP4224D	1	\$	534.10		
Option 2	E300 Communications Module	193ECMETR	1	\$	610.40		
-	E300 Expansion Module	193EXPDIO4224D	1	\$	390.60		
Intelligent MPR	E300 Expansion Power Supply	193-EXP-PS-DC	1	\$	293.30		
C	Auxiliary Relays	Finder 55 Series & Base	1	\$	26.79		
	Network Connection to PLC	Cat 6	1	\$	47.58		
<i>Option 3</i> Distributed I/O	Electronic Overload Relay	S&S CEP7-EEHF	1	\$	902.72		
	Thermistor Relay	S&S RT7-E2	1	\$	436.80	-\$320	
	Current Transducer	IME TT351030VDC	1	\$	495.04		
	Undercurrent Relay	Carlo Gavazzi DIB-02-C-D48-5A	1	\$	276.64		
	Auxiliary Relays	Finder 55 Series & Base	5	\$	133.95		
	PLC Digital Inputs	Flex I/O 1794-IB16	8	\$	344.23		
	PLC Digital Outputs	Flex I/O 1794-OB16	2	\$	104.08		
	PLC Analog Inputs	Flex I/O 1794-IE8	1	\$	173.91		
	Control Cable (Cores)	1C 1.5mm ² (Panel Wiring)	13	\$	723.11		

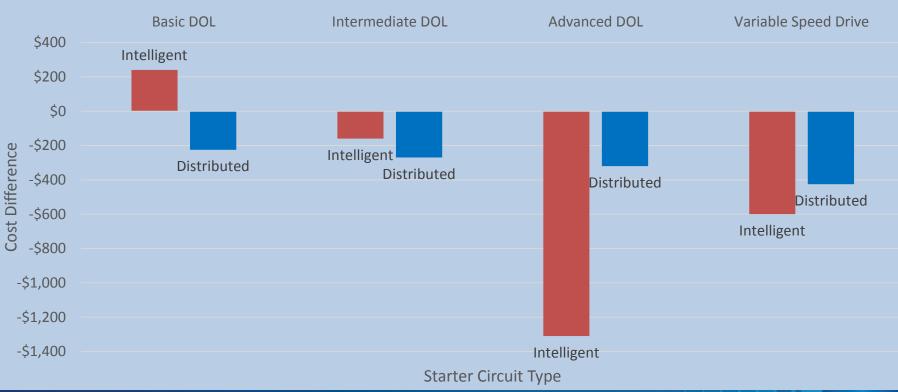
ADVANCED DOL COMPARISON

- Intelligent MPR option is \$1,310/motor less than hard wired option.
- Distributed I/O option is \$320/motor less than hard wired option.
- Main factors affecting cost comparison:
 - Additional protection capability of E300 relay.
 - Higher cost of additional MCC hardware.
 - Higher cost of interconnecting wiring to remote PLC.

VSD COMPARISON

Scenario 4 - Typical Variable Speed Drive							
Description	Component	Make / Model	Qty	S	ub Total	Cost Difference	
<i>Option 1</i> Hard Wired	Auxiliary Relays	Finder 55 Series & Base	4	\$	107.16		
	PLC Digital Inputs	ControlLogix 1756-IB32	5	\$	178.27	Baseline	
	PLC Digital Outputs	ControlLogix 1756-OB32	1	\$	45.01		
	PLC Analog Inputs	ControlLogix 1756-IF16	1	\$	127.04		
	PLC Analog Outputs	ControlLogix 1756-OF8	1	\$	316.50		
	Control Cable (Cores)	1C 1.5mm ² (Part of Multicore)	12	\$	1,074.24		
Option 2 Network Connection	PF753 Ethernet/IP Communications	20-750-ENETR	1	\$	482.30		
	PF753 I/O Expansion Module	20-750-2262C-2R	1	\$	247.80	-\$600	
	Auxiliary Relays	Finder 55 Series & Base	1	\$	26.79		
	Network Connection to PLC	Cat 6	1	\$	488.64		
<i>Option 3</i> Distributed I/O	Auxiliary Relays	Finder 55 Series & Base	4	\$	107.16	-\$425	
	PLC Digital Inputs	Flex I/O 1794-IB16	5	\$	215.14		
	PLC Digital Outputs	Flex I/O 1794-OB16	1	\$	52.04		
	PLC Analog Inputs	Flex I/O 1794-IE8	1	\$	173.91		
	PLC Analog Outputs	Flex I/O 1794-OE12	1	\$	206.94		
	Control Cable (Cores)	1C 1.5mm ² (Panel Wiring)	12	\$	667.49		

VSD COMPARISON


- Intelligent MCC option is \$600/motor less than hard wired option.
- Distributed I/O option is \$425/motor less than hard wired option.
- Main factors affecting cost comparison:
 - Higher cost of additional analogue PLC I/O.
 - Higher cost of interconnecting wiring to remote PLC.

COMPARISON SUMMARY

ELECTRICAL ENGINEERING SPECIALISTS

Starter Type Cost Comparison

TOTAL MCC COMPARISON

- Individual cost differences used to estimate cost difference for a complete MCC.
- Complete MCC cost comparison based on 30 motor starter circuits consisting of:
 - 13 basic DOL motors
 - 9 intermediate DOL motors
 - 3 advanced DOL motors
 - 5 variable speed drives

TOTAL MCC COMPARISON

Total MCC Cost Comparison (30 Drives)						
Description	Component	Qty	Sub Total	Cost Difference		
	Basic DOL Motor Starter	13	\$ 15,224			
Option 1	Intermediate DOL Motor Starter	9	\$ 19,362	Deceline		
Hard Wired	Advanced DOL Motor Starter	3	\$ 11,734	Baseline		
	Variable Speed Drives	5	\$ 9,241			
	Basic DOL Motor Starter	13	\$ 18,330			
Option 2	Intermediate DOL Motor Starter	9	\$ 17,919	¢5 390		
Intelligent MCC	Advanced DOL Motor Starter	3	\$ 7,802	\$5,280		
	Variable Speed Drives	5	\$ 6,228			
	Basic DOL Motor Starter	13	\$ 12,270			
Option 3	Intermediate DOL Motor Starter	9	\$ 16,903	¢9 500		
Distributed I/O	Advanced DOL Motor Starter	3	\$ 10,771	\$8,500		
	Variable Speed Drives	5	\$ 7,113			

IN CONCLUSION

- Intelligent MCC cost varies depending on the complexity of the motor starter circuit.
- The more protection features required, the more cost effective an intelligent MCC is.
- Intelligent MCC cost is lower on average than a traditional hard wired MCC.
- Distributed I/O to automate a traditional hard wired MCC more cost effective than remote PLC I/O.

IN CONCLUSION

- The cost of interconnecting cabling has a big impact on the comparative cost.
- Total cost difference between all three options is relatively small.
 - Intelligent MCC option is approx. 4% cheaper.
 - Distributed I/O option is approx. 6% cheaper.
- Careful consideration should be given to the overall architecture selected, not just MCC hardware costs.

QUESTIONS?

